Analytic Urns Philippe Flajolet

نویسندگان

  • Philippe Flajolet
  • Pierre Nicodème
  • Joaquim Gabarró
چکیده

The talk1 describes an analytic approach to urn models of the Pólya type where an urn may contain balls of either of two colours. At each step, a ball is randomly drawn and replaced by balls of the two colours; a fixed 2× 2-matrix with constant row sum determines the replacement policy. The treatment starts from a partial differential equation associated with the model and bases itself on conformal mapping arguments coupled with singularity analysis techniques. This gives access to moments characterizations, Gaussian limits and large deviation results. In some specific and well-determined cases, the urn models admit explicit representations in terms of Weierstraß elliptic functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exactly Solvable Balanced Tenable Urns with Random Entries via the Analytic Methodology

This paper develops an analytic theory for the study of some Pólya urns with random rules. The idea is to extend the isomorphism theorem in Flajolet et al. (2006), which connects deterministic balanced urns to a differential system for the generating function. The methodology is based upon adaptation of operators and use of a weighted probability generating function. Systems of differential equ...

متن کامل

Fully Analyzing an Algebraic Pólya Urn Model

This paper introduces and analyzes a particular class of Pólya urns: balls are of two colors, can only be added (the urns are said to be additive) and at every step the same constant number of balls is added, thus only the color compositions varies (the urns are said to be balanced). These properties make this class of urns ideally suited for analysis from an “analytic combinatorics” point-of-v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003